
408 

The initial motion of a gas bubble formed 
in an inviscid liquid 

Part 1. The two-dimensional bubble 

By J. K. WALTERSAND J. F. DAVIDSON 
Department of Chemical Engineering, Pembroke Street, Cambridge 

(Received 22 September 1961) 

The paper deals with the initial motion of a two-dimensional bubble starting 
from rest in the form of a cylinder with its axis horizontal. The theory is based 
on the assumptions of irrotational motion in the liquid round the bubble, con- 
stant pressure within the bubble, and small displacements from the cylindrical 
form. This theory predicts that the bubble should rise with the acceleration 
of gravity, over a distance of at least the initial bubble radius, and that a 
tongue of liquid should be projected up from the base of the bubble into 
its interior. These predictions are confirmed by experiments which also show 
how the vorticity necessary for steady motion in the spherical-cap form is 
generated by the detachment of two small bubbles from the back of the main 
bubble. 

1. Introduction 
When a bubble is suddenly formed in a liquid, it tends to rise, and simul- 

taneously to distort, under the influence of buoyancy forces. This paper deals 
with the upward motion of a two-dimensional bubble which starts from rest 
with a circular shape and then is free to rise under gravity forces. The subsequent 
distortions when such a bubble is suddenly formed in water have been examined 
photographically, and the results compared with theory for a bubble in an in- 
viscid liquid of zero surface tension. 

The work was begun because of interest in the formation of bubbles at an 
orifice through which air is blown steadily into a liquid of small viscosity. Work 
on this problem was described in a previous paper (Davidson & Schiiler 1960), 
in which the theory was based on the assumption that the bubbles, as they form, 
are spherical. Experimental observations showed that this assumption is in- 
correct, since although each bubble forming at  the orifice begins by being nearly 
spherical, the upward motion due to buoyancy soon produces distortion into a 
shape which approaches the spherical-cap form described by Davies & Taylor 
(1949) for a bubble in steady motion. 

As a first step towards explaining these distortions, a study was made of the 
upward motion of a two-dimensional bubble which began as a cylindrical cavity 
filled with air. The theory to explain the subsequent motion was based on the 
assumption of irrotational motion in the liquid, and by adding together a series 
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of harmonics it was possible to obtain an expression for the velocity potential to 
give constant pressure at the surface of the bubble, surface tension being neg- 
lected. This theory, valid only for small displacements from the cylindrical form, 
predicts that the bubble should have an initial upward acceleration of g, and that 
the bubble should distort into the form of the cross-section of the head of a 
mushroom, a tongue of liquid being projected upwards from the bottom of the 
bubble. These predictions are confirmed by experiment; the results also show 
how the flow changes from the irrotational motion to the fully separated flow 
described by Davies & Taylor (1949). 

The foregoing theory has been adapted to the more complex case of a growing 
spherical bubble formed in an inviscid liquid. The results from this theory are in 
reasonable agreement with the measurements of Davidson & Schuler (1960) 
and will be published in Part 2 of the present paper. 

It is believed that a theory of the kind outlined above would be applicable to 
the study of nucleate boiling, the initial motion of a bubble produced by a sub- 
marine explosion, and the initial motion of the fireball generated by an atomic 
explosion. The theory given in this paper is related to that of Hartunian & Sears 
(1957), who, however, were concerned with small bubbles in which surface 
tension is important; consequently they used rather different methods. The 
analysis given here also resembles that of Penney & Price (1950), although they 
were concerned only with bubble pulsations when there was no translation of 
the bubble. 

2. The theory of the initial motion 
To calculate the motion, induced by gravity, of an initially cylindrical bubble 

in an inviscid liquid, we express the velocity potential q5 in terms of a series of 
harmonics whose coefficients have to be adjusted to give constant pressure 
within the bubble. The series is 

Ua2cos6 pn #=-- + 2 -cosn6. 
r n=2 rn 

Here a is the initial radius of the bubble, r and 6 are polar co-ordinates whose 
origin moves with the bubble and has an upward velocity U a t  time t after the 
start. The coefficients pn are functions of time, and have to be adjusted so that 
the pressure within the bubble shall be independent of 6. The pressure p at any 
point in the liquid is found from Bernoulli’s theorem 

where a#/at is the partial derivative at  a point fixed in space, q is the absolute 
velocity of the liquid, and K is constant since the pressure at  infinity is presumed 
fixed. Following the method described by Lamb (1932), a#/at is calculated in 
terms of + = - U cos 6 and 8 = U sin 6/r ,  the rates of change of r and 6 for a point 
fixed in space, so that from (1)  
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where p1 = Ua2. Also, q2 = 
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(8gl/80)2/r2, and again using ( 1 ) ,  

To calculate the pressure ps just outside the bubble, (3) and (4) are substituted 
into ( 2 )  with r = R, where R is the radius vector from the moving origin of 
( r ,  0) to the surface of the bubble. Then R is written as a(l  + C), where 5, a dimen- 
sionless function oft, 0 and a, describes the shape of the bubble, and it is assumed 
that 5 < 1, so that 

Experimental observations show that the volume of a rising bubble does not 
change much, and it will therefore be assumed that a is constant, so that the 
bubble is imagined to be filled with incompressible fluid of zero density. Also, 
surface tension is neglected, and consequently p ,  must be equal to the pressure 
within the bubble, and must be independent of 0. Therefore in ( 5 )  the coefficients 
of cos n0 must be zero, leading to the following series of equations: 

where pl = Ua2 as before. In  order to render these equations tractable, we must 
ignore the non-linear terms under the summation signs, and the first approxi- 
mation is thus: 

I from (6), /jf)/a2 = u(1) = gt, 

( -  l)n-l(n- l ) !  n! 2naz 
(2n) ! t from (7) for n 2 2, P$) = _____ 

the latter being obtained by repeated integration n- 1 times. We may now 
insert these values of /3$) in the first of the non-linear terms in (6) and (7) and 
integrate again to obtain, as a second approximation, 

where N = gt2/a. In the Appendix it is shown that the equations (9) are accurate 
to about 8 % for N < 1. Integration of the first of equations (9) gives the distance 
s that the centre of co-ordinates has risen in time t, 
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To calculate the shape of the bubble, the normal velocity at its surface 
a<+ U cos 3 is equated to - (a#/ar)T=R, giving 

the O(5)  term having been retained in this equation. It is not easy to integrate 
(1 l), but since the expressions under the summation signs are odd polynomials 
in t ,  and converge like a geometrical progression, it is reasonable to try a solution 
of the form 

Substituting from (9) and (12) into (1 1) and equating coefficients of powers of 
t then gives for the distortion 6, using only the first four terms, 

5 = - 0.167N2 cos 23 + 0.0944N3(cos 33 + 0.294 cos 0) 

{ =  A,N2+A2N3+A3N4+. . . .  (12) 

- 0*0162N4(cos 40+ 0.0162 cos 20 + 0.397) + 0.0416N6 

x (cos 53 - 0.0203 cOs 33 + 0.680 cos 3). (13) 

Figure 3 shows bubble shapes calculated from this equation, and figure 5 
the vertical diameter D of the bubble as a function of N .  

The theoretical movement of the centroid is a convenient quantity to compare 
with experimental results, since it is representative of the movement of the whole 
bubble, and it can be obtained by adding the coefficient of cos 3 in (13) to the 
movement s of the centre of co-ordinate axes from (10). This gives a displacement 

sg = 0.5Na + 0.0056N3a, (14) 

neglecting higher powers of N. We now consider the radial deviation 6 of the 
bubble from a circle of radius a centred on a point G whose upward displacement 
is given by (14). [ will be given by a series like (13) but containing no cos 3 terms, 
and therefore 

I o n C  cos 3d3 = 0. (15) 

Now provided 6 is small compared with a, (15) is the condition that G shall be 
the centroid of the bubble. It will be seen that (14) gives a movement almost 
the same as that due to a constant acceleration of g. 

3. Experiments with a two-dimensional bubble 
For comparison with the above theory, an air bubble was formed in water 

between two vertical Perspex plates 8 in. apart, as shown in figure 1. The column 
of water was 10 in. wide and 4 ft. high, and the air bubble was formed by suddenly 
withdrawing the brass tube shown in the figure. The impulse I to withdraw the 
tube was applied by a steel cable passing over a pulley and connected through 
a spring to a horizontal plate on to which a weight was dropped from a height of 
4 ft. In  this way an effectively two-dimensional bubble was formed in the water 
within 0.005sec. The air pressure within the tube was such that there was 
minimal tendency for a volume change to occur on release. 

The subsequent motion of the bubble was photographed either by a Fastax 
camera at 2000 frameslsec or by a Path6 camera a t  80 frameslsec, and a typical 
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series of pictures is shown in figure 2, plate 1. With the Fastax camera, the zero 
time was marked by a neon bulb viewed by the camera and lit when a micro- 
switch was tripped by withdrawal of the tube. 

The film was analysed frame by frame by projecting it and drawing the shape 
of the enlarged image of the bubble from each frame on to a sheet of cardboard, 
the original centre of the bubble also being marked as a reference point. The 
shape was then cut out and each model was suspended from two points to locate 

Water 

FIGURE 1. Apparatus for studying two-dimensional bubbles. 

the centroid, and the distance sg that it  had risen was measured in the early 
stages with a travelling microscope and subsequently with a centimetre rule. 
The vertical diameter of the bubble was also measured and the results are 
shown in figures 4 and 5. 

4. Comparison between theory and experiment 
Figure 3 shows a direct comparison of bubble shapes, as measured experi- 

mentally and as calculated theoretically from (13). The centroids are shown, 
and each theoretical shape is placed so that its centroid coincides with the 
centroid of the observed bubble. The two sets of shapes show general agreement, 
and it is satisfactory that the theory predicts the formation of the tongue of 
liquid that comes up from the bottom of the bubble. This tongue is characteristic 
of bubbles forming at an orifice, and good photographs of it are given by Helsby 
& Tuson (1955). Hitherto it has not been clear whether the tongue is due to the 
following bubble; it is now certain that the tongue is characteristic of an 
accelerating isolated bubble. 



Initial motion of a gas bubble in arb inoiscid liquid 413 

Figure 4 shows the measured upward movement compared with the theoretical 
result (14). The zero as marked is the time at which the brass tube had just begun 
to move. The time of complete withdrawal of the tube was 0.005sec, which is 
equivalent to a zero error of 0.098 on the abscissa and the thin line on figure 4 

N J  = 0 6  
I = 30 msec 

0.7 
36 

0.8 
41 

09 0.95 1.0 
46 48.5 51 

-, experimental; ---- , theoretical. 
FIGURE 3. Experimental and theoretical bubble shapes compared : 

N i  = L (g/a)* 

- 0.2 

FIGURE 4. The upward displacement of a 2 in. dia. bubble starting from rest: 
A ,  bubble 1 ; 0, bubble 2. 

is obtained from equation (14) with this point as origin. The results are seen to 
be in good agreement with the shifted line, and it would thus seem that the 
bubble does not begin to move until the tube has been completely withdrawn 
from the column. There is some scatter at  the lower end of the curve, but the 
errors in measuring the displacements there are comparable with the displace- 
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ments themselves so their significance is not so great as would appear at first 
sight. 

The results shown in figure 4 confirm the theoretical prediction from (14), 
that the acceleration is almost exactly g up to N = 1. Equation (14) is effectively 
valid only for N less than unity, because of the omission of higher powers of N ,  
but the experimental results show that the uniform upward acceleration of g 
is maintained when N is greater than unity. This confirms to some extent the 
assumption of Davidson & Schiiler (1960), which was that an initially spherical 

0 0.2 0.4 06 0.8 1 .O 1.2 

N* = t(g/a)+ 

A, bubble 1; 0 ,  bubble 2. 
FIGURE 5. The change in vertical diameter of EL 2 in. die. bubble starting from rest : 

bubble starting from rest would have an upward acceleration of 29; this is 
equivalent to an acceleration of g in the two-dimensional case, and will be further 
considered in Part 2. 

Figure 5 shows the vertical diameter of the bubble, as a measure of its dis- 
tortion from the cylindrical form, compared with the theory obtained from (13). 
The measured shapes in figure 3 show that considerable scatter is to be expected 
but it is difficult to see why the distortion should be greater than the theoretical 
for N < 1; for the effects of surface tension and viscosity should make the 
distortion less. The zero error mentioned above would make these differences 
more marked, but it is probable that the presence of the Perspex column walls, 
the limited extent of the fluid, and the slight disturbance caused by the with- 
drawal of the tube would account for the differences. It should be pointed out 
that the theory is valid only for N < 1. 

A final point that emerges from a study of the photographs shown in figure 2, 
plate 1, is the way in which the flow round the bubble changes from the irrota- 
tional motion of the above theory to the fully separated flow necessary for steady 
motion of the bubble in the spherical-cap form described by Davies & Taylor 
(1949). The change takes place by the detachment of two small bubbles from the 
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main bubble at  its lower extremities, each of the two detached bubbles being at  
the centre of a vortex. This mode of generating vorticity behind the main 
bubble by the detachment of two smaller bubbles may be contrasted with the 
way in which vorticity is generated in the wake of a solid object during its 
acceleration from rest. In  the latter case the growth and detachment of boundary 
layers plays an essential part, whereas the bubble succeeds in generating vorticity 
-by breaking up-without any help whatever from viscous forces. 

Non-linear terms in (6)  and ( 7 )  
Appendix 

Using the first approximation pg), the series in ( 7 )  becomes 

and the ratio of the mth to the (m-  1)th term, after integration with respect 
to t ,  is 

m(m + n )  (4m + 2n- 5) N 2  
(2m- 1) (2m+2n- 1) (4m+2n- 1 ) '  

This tends to N2/4  when m is large, and hence by comparison with a geometrical 
progression the sum of the above series is close to I / (  1 - N 2 / 4 )  times the first term, 
provided N < 2 .  With N = 1, the error introduced into ( 7 )  by neglecting all 
terms but the first in the infinite series can be shown to be close to one-third of the 
first term; now from (9) the first term is seen to be n(n+ 1)/(2n+ 1) (2n+ 3 )  
times @), the first approximation. Hence for large n, the total error introduced 
by neglecting the second and higher terms in ( 7 )  is close to @/(3 x 4), i.e. 8 yo of 
the first approximation. 

O(<) term in (5) 

A referee has pointed out that the O(<) terms in (5) give rise to a term of order 
(gt2)"+l in ( 7 ) )  and that this affects the second approximation for pn. Closer 
inspection of equations ( 3 ) )  ( 4 )  and (5) shows that in (5) 

00 = - [? COS 0 +  2U2(1- COS 20) 
5 

Substituting for 5 from ( 1 3 ) ,  using only the first term, we see that the coefficient 
of cos 0 in the expression for O(5)  is 

0.0835N2(&a-l + ga) + O( t8) ,  
and insertion of the first approximation for (=  ga2) then simplifies this coeffi- 
cient to 0-167N2ga, leaving out the O(t*) term. The second approximation for U 
from ( 6 )  should thus be obtained by integrating 
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which leads to U@) = gt( 1 - &N2), which can itself be integrated to  give 
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s/a = +N(1-N2/18).  

The last two equations differ from (9) and (10) by rather less than the 8 yo 
inaccuracy already described in the first part of this Appendix; all these errors 
mean that the second term in each of the square brackets of (9) is of rather 
doubtful value. However, it is easily shown that these terms affect only N 4  and 
higher powers in (13). 

Finally, it is worth noting that the use of (16) in place of (10) leads to (14) 
becoming s8 = 0.5Na, so that the bubble has an acceleration of exactly g through- 
out the period when these approximations are valid. 
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